Quiz 7: November 9, 2021

Name: Solution key

Student ID:

1. (5 points) If $n>1$ and $n \in$ the Integers, prove by Induction that

$$
3^{n} \geq 2 n+5
$$

Clearly identify your Basis Case (1 points), your Inductive Step (3 points), and your Inductive Hypothesis (1 points).
2. (5 points) If $n>0$ and $n \in$ the Integers, prove by Induction that

$$
2^{n} \leq 2^{n+1}-2^{n-1}-1
$$

Clearly identify your Basis Case (1 points), your Inductive Step (3 points), and your Inductive Hypothesis (1 points).

Q1

$$
3^{n} \geq 2 n+5-P(n)
$$

Basis case: $n=2$

$$
3^{2}=9 \geq 2(2)+5=9
$$

Inductive Hypothesis:

$$
3^{n} \geq 2 n+5
$$

Inductive Step:

$$
3^{n+1} \geq 2(n+1)+5=2 n+7-P(n+1)
$$

$$
3^{n+1}=3^{n} \cdot 3 \geq(2 n+5) \cdot 3=2 n+15 \geq 2 n+7=2(n+1)+5
$$

Q2

$$
2^{n} \leq 2^{n+1}-2^{n-1}-1-P(n)
$$

Basis case: $n=1$

$$
\begin{aligned}
& 2^{1}=2 \leq 2^{1+1}-2^{1-1}-1=2^{2}-2^{0}-1=4-1-1=2 \\
& 2 \leq 2
\end{aligned}
$$

Inductive hypothesis

$$
2^{n} \leq 2^{n+1}-2^{n-1}-1
$$

Inductive Step

$$
2^{n+1} \leq 2^{n+2}-2^{n}-1-P(n+1)
$$

$$
2^{n+1}=2 \cdot 2^{n} \leq 2 \cdot\left(2^{n+1}-2^{n-1}-1\right)=2^{n+2}-2^{n}-2 \leq 2^{n+2}-2^{n}-1
$$

