Quiz 6: November 4, 2021
Name:
Student ID:
To remind you of the Brain-dead recipe for Inductive Steps:

1. Write down the LHS of $\mathrm{P}(\mathrm{n}+1)$
2. Rewrite LHS of $\mathrm{P}(\mathrm{n}+1)$ to include LHS $\mathrm{P}(\mathrm{n})$
3. Replace LHS of $\mathrm{P}(\mathrm{n})$ with RHS $\mathrm{P}(\mathrm{n})$
4. Rewrite so RHS becomes RHS P(n+1)
5. (10 points) If $n \in$ the Integers, and $n \geq 0$, prove by Induction that

$$
\sum_{k=0}^{n} i \cdot i!=(n+1)!-1
$$

Clearly identify your Basis Case (2 points), your Inductive Step (6 points), and your Inductive Hypothesis (2 points).

$$
\text { Base Case: } k=0 \rightarrow 0.0!=0=(0+1)!-1=1-1=0
$$

Inductive : assume $P(n)$ is true for all $n \geqslant 0 ;$
Hg pothesis:

$$
\text { i. H } \quad P(n)=\sum_{k=0}^{n} i . i!=(n+1)!-1
$$

$$
\begin{aligned}
& \text { Prove: } \sum_{k=0}^{n+1} i \cdot i!=(n+2)!-1 \\
& \text { LHS: P(n+1) }=\sum_{k=0}^{n+1} i 0 i!=\underbrace{\sum_{k y}^{n} i \cdot i!H}_{k=0}+(n+1)(n+1)!= \\
& =(n+1)!-1+(n+1)(n+1)!=(n+1)!(n+1+1)-1 \\
& =(n+1)!(n+2)-1=(n+2)!-1=\text { RH }
\end{aligned}
$$

