Name:

Student ID:

For this quiz, refer to these helpful tables for Propositional Calculus:

TABLE 6 Logical Equivalences.				
Equivalence	Name	TABLE 1 Rules of Inference.		
$p \wedge \mathbf{T} \equiv p$	Identity laws	Rule of Inference	Tautology	Name
$p \lor \mathbf{F} \equiv p$		p D D D	$(p \land (p \to q)) \to q$	Modus ponens
$p \lor \mathbf{T} \equiv \mathbf{T}$	Domination laws	$\therefore \frac{p \to q}{q}$		
$p \wedge \mathbf{F} \equiv \mathbf{F}$		$\neg q$	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	$\therefore \frac{p \to q}{\neg p}$		
$\neg(\neg p) \equiv p$	Double negation law	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \end{array}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	$ \begin{array}{c} \therefore p \to r \\ \hline p \lor q \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws	$\therefore \frac{\neg p}{q}$		
$(p \land q) \land r \equiv p \land (q \land r)$		$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	$p \wedge q$	$(p \land q) \rightarrow p$	Simplification
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws	p p q	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	$\therefore \overline{p \land q}$ $p \lor q$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	$\therefore \frac{\neg p \lor r}{q \lor r}$		

 $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ Contraposition $p \Leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ Definition of Biconditional $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

Relation by Implication (RBI) Alternate Definition of xor

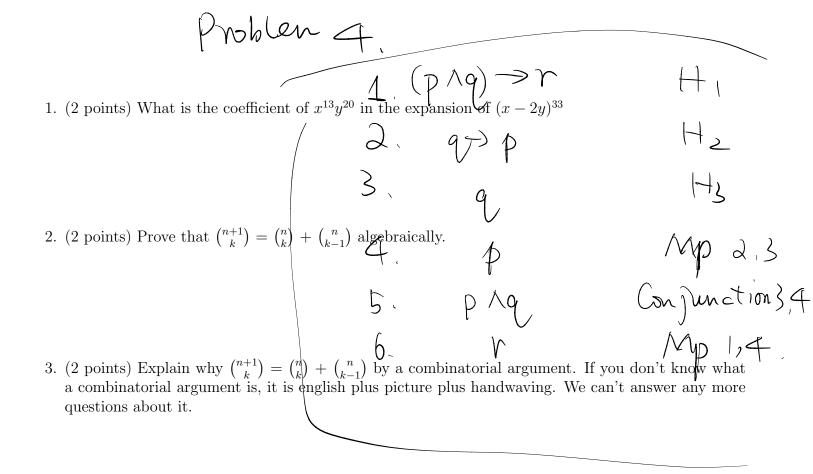
Solution

$$\binom{33}{13}$$
, a^{2*} is coefficient.

1. (2 points) What is the coefficient of $x^{13}y^{20}$ in the expansion of $(x - 2y)^{33}$

$$\binom{33}{13} \times \binom{3}{13} \binom{-2}{13} = \binom{33}{13} \binom{-2}{13} \times \binom{3}{13} \binom{-2}{13} \times \binom{3}{13} \binom{-2}{13} \times \binom{3}{13} \binom{-2}{13} \times \binom{3}{13} \binom{-2}{13} \binom{-2}{1$$

2. (2 points) Prove that $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ algebraically. From Right to Left: $\binom{n}{k} + \binom{n}{k-1} \approx \frac{n!}{k! (n-k)!} + \frac{n!}{(k-1)! (n-k+1)!}$ $= \frac{n! (n+l-k)}{k! (n+l-k)!} + \frac{n! k}{k! (n+l-k)!} = \frac{n! (n+l)}{k! (n+l-k)!} = \binom{n+l}{k}$ 3. (2 points) Explain why $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ by a combinatorial argument. If you don't know what a combinatorial argument is, it is english plus picture plus handwaving. We can't answer any more questions about it. $\rightarrow In \quad \alpha \quad (h+1)-size \quad set: \{ \times_1, \times_2, \times_3, \dots, \times_{n+1} \}$ -> Xi is red. Others are black. -> If I choose k elements from this set. p), and q, you can prove r. -> There only are 2 results: S Xi in your selected K-size set. Xi is not in your selected set. (2)→ For ①: you need to select other (k-1) elements For 2 : you need to select other k elements from the n left elements $\rightarrow_{\#} \mathbb{D} : \left(\begin{array}{c} \mathbb{N} \\ \mathbb{N} \end{array} \right) \qquad \longrightarrow_{\#} \left(\begin{array}{c} \mathbb{N} \\ \mathbb{N} \end{array} \right) \qquad \qquad \longrightarrow_{\#} \left(\begin{array}{c} \mathbb{N} \\ \mathbb{N} \end{array} \right)$



4. (4 points) Use a formal proof using rules of inference to prove that given Hypotheses $(p \land q \to r), (q \to p)$, and q, you can prove r.