Quiz 5: November 4, 2021

Name:		
Student ID.		

For this quiz, refer to these helpful tables for Propositional Calculus:

TABLE 6 Logical Equivalences.						
Equivalence	Name	TABLE 1 Rules of Inference.				
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	Rule of Inference	Tautology $(p \land (p \rightarrow q)) \rightarrow q$	Name Modus ponens		
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	$ \begin{array}{c} p \to q \\ \therefore \overline{q} \\ \hline \neg q \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens		
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	$p \to q$ $\therefore \neg p$	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tonens		
$\neg(\neg p) \equiv p$	Double negation law	$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism		
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	$p \lor q$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws	$rac{\neg p}{q}$	$p \to (p \lor q)$	Addition		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws	$\therefore \frac{p}{p \vee q}$ $p \wedge q$	$(p \land q) \rightarrow p$	Simplification		
$ \neg (p \land q) \equiv \neg p \lor \neg q \neg (p \lor q) \equiv \neg p \land \neg q $	De Morgan's laws	p	$((p) \land (q)) \to (p \land q)$	Conjunction		
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws	$ \begin{array}{c} \vdots \\ \hline p \wedge q \\ \neg p \vee r \end{array} $	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution		
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws	$\therefore \frac{\neg p \lor r}{q \lor r}$				

Relation by Implication (RBI) $p \to q \ \equiv \ \neg p \ \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ Contraposition $p \Leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ Definition of Biconditional

 $p \oplus q \equiv (p \vee q) \wedge \neg (p \wedge q)$ Alternate Definition of xor

- 1. (2 points) What is the coefficient of $x^{13}y^{20}$ in the expansion of $(x-2y)^{33}$
- 2. (2 points) Prove that $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ algebraically.
- 3. (2 points) Explain why $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ by a combinatorial argument. If you don't know what a combinatorial argument is, it is english plus picture plus handwaving. We can't answer any more questions about it.

4. (4 points) Use a formal proof using rules of inference to prove that given Hypotheses $(p \land q \to r)$, $(q \to p)$, and q, you can prove r.