Name:	
Student ID:	

For this quiz, refer to these laws and identities for Propositional Calculus:

•

N am e	Equivalence		
Identity Laws	p∧ T ≡ p	p ∨ F = p	
Domination Laws	p ∨ T ≡ T	p∧F = F	
Idempotent Laws	$p \lor p \equiv p$	$p \land p \equiv p$	
Double Negative Law	¬ (¬p) ≡ p		
Commutative Laws	$p \lor q \equiv q \lor p$	$p \land q \equiv q \land p$	
A ssociative Laws	(p∨q)√r = p∨(q∨r)	(p∧q)∧r = q∧(p∧r)	
Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
De Morgan's Laws	¬(p∧q)≡ ¬p ∨ ¬q	¬(p∨q)≡ ¬p ∧ ¬q	
Absorption Laws	p∨(p∧q) = p	p∧(p∨q) = p	
Negation Laws	p∨¬p ≡ T	p∧¬p ≡ F	
Def. of implication	$(p \rightarrow q) = (\neg p \lor q)$		
Def. of equivalence	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \equiv (p \land q) \lor (\neg p \land \neg q)$		

2010 CARLOS

Solution:

- 1. The questions below start with the formula $f(a, b, c) = (\neg a \land \neg b) \lor (a \land c)$
 - (a) (1 points) Give us the truth table for f(a, b, c).
 - (b) (2 points) Give us the Conjunctive Normal Form (CNF–also known as Product of Sums, POS) for f(a, b, c)
 - (c) (2 points) Give the Dual of your solution for Part b of this question.

- 1. The questions below start with the formula $f(a, b, c) = (\neg a \land \neg b) \lor (a \land c)$
 - (a) (1 points) Give us the truth table for f(a, b, c).
 - (b) (2 points) Give us the Conjunctive Normal Form (CNF–also known as Product of Sums, POS) for f(a, b, c)
 - (c) (2 points) Give the Dual of your solution for Part b of this question.

2. (5 points) Use the provided laws and identities to prove that $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology.

det of Implication $E_{p} \land (\neg p \lor q)] \rightarrow q$ Distributive Saw $p \in L(p \land q) \lor (q \land q)$ Negation Lan 0 V (p/q)] >q Identity Law $P \land q \rightarrow q$ let of Inglication $\neg (p \land q) \lor q$ Morgans lai PV(Jq/q) negation Low