Quiz 3: October 14, 2021

Name: \qquad
Student ID: \qquad
For this quiz, refer to these laws and identities for Propositional Calculus:

Name	Equivalence
Identity Laws	$\mathrm{p} \wedge \mathbf{T} \equiv \mathrm{p} \quad \mathrm{p} \cup \mathbf{F} \equiv \mathrm{p}$
Domination Laws	$p \vee \mathbf{T} \equiv \mathbf{T} \quad \mathrm{~T} \wedge \mathbf{F} \equiv \mathbf{F}$
Idempotent Laws	$p \vee p \equiv p \quad \rho \wedge p \equiv p$
D ouble Negative Law	$\neg(\neg \mathrm{P}) \equiv \mathrm{p}$
Commutative Laws	$p \vee q \equiv q \vee p$ a $\quad p \wedge q \equiv q \wedge p$
Associative Laws	$(p \vee q) \cup r \equiv p \vee(q \vee r) \quad(p \wedge q) \wedge r \equiv q \wedge(p \wedge r)$
Distributive Laws	$\left.p \vee(q \wedge r) \equiv(p \cup q) \wedge(p \vee)^{\prime}\right) \quad p \wedge(q \cup r) \equiv(p \sim q) \cup(p \wedge r)$
De Morgan's Laws	$\neg(\mathrm{p} \wedge q) \equiv \neg p \vee \neg q)$
Absorption Laws	$p \vee(p \wedge q) \equiv p \quad p \sim(p \vee q) \equiv p$
Negation Laws	$p \vee \neg \mathrm{p} \equiv \mathbf{T}$
Def. of implication	$(p \rightarrow q) \equiv(\neg p \vee q)$
Def. of equivalence	$p \leftrightarrow q$ 俍 $(p \rightarrow q) \wedge(q \rightarrow p) \equiv(p \wedge q) v(\neg p \wedge \neg q)$

1. The questions below start with the formula $f(a, b, c)=(\neg a \wedge \neg b) \vee(a \wedge c)$
(a) (1 points) Give us the truth table for $f(a, b, c)$.
(b) (2 points) Give us the Conjunctive Normal Form (CNF-also known as Product of Sums, POS) for $f(a, b, c)$
(c) (2 points) Give the Dual of your solution for Part b of this question.
2. (5 points) Use the provided laws and identities to prove that $[p \wedge(p \rightarrow q)] \rightarrow q$ is a tautology.
